Mathematical Modelling of Buck Converter

نویسندگان

  • Rajvir Kaur
  • Navdeep Kaur
چکیده

A dc converter is a lossless dc transformer that must supply regulated outputted voltage under varying load and input voltage condition. Also the converter values changes with time, temperature and pressure. Hence to control the output voltage, detailed understanding of the dynamic behaviour, transient response and small signal characteristics of the converter is required, which can’t be understood by the physical model of the converter. So the mathematical modelling of the dc-dc converter is a way to model them as time independent systems, defined by a unified set of differential equations, capable of representing circuit waveforms. Therefore, it can be a convenient approach for designing controllers to be applied to switched converters. This paper derives the mathematical modelling of a pulse width modulated (PWM) open loop buck converter operating in continuous conduction mode (CCM) and presents its verification by simulation in SIMULINK. The parasitic resistance of reactive elements is included in the circuit model in order to avoid the problem of inconsistent initial condition. (Abstract) Keywords-state space modelling, buck converter, Simulink, Differential Equations __________________________________________________*****_________________________________________________

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling of Buck DC-DC Converter Using Simulink

In this paper, a mathematical model of a Buck Converter for simulation using Simulink without any Sim Power System Elements is illustrated. We also explain how to use Matlab’s Tuning tools to obtain better rise time, settling time and peak overshoot.

متن کامل

Fractional Modeling and Analysis of Buck Converter in CCM Mode Peration

In this paper fractional order averaged model for DC/DC Buck converter in continues condition mode (CCM) operation is established. DC/DC Buck converter is one of the main components in the wind turbine system which is used in this research. Due to some practical restriction there weren’t exist input voltage and duty cycle of converter therefor whole of the wind system was simulated in Matlab/Si...

متن کامل

SLIDING MODE CONTROL BASED ON FRACTIONAL ORDER CALCULUS FOR DC-DC CONVERTERS

The aim of this paper is to design a Fractional Order Sliding Mode Controllers (FOSMC)for a class of DC-DC converters such as boost and buck converters. Firstly, the control lawis designed with respect to the properties of fractional calculus, the design yields an equiv-alent control term with an addition of discontinuous (attractive) control law. Secondly, themathematical proof of the stabilit...

متن کامل

Analysis and Design of a New Single Switch Non-Isolated Buck-Boost dc-dc Converter

In this paper, a new transformerless buck-boost converter based on ZETA converter is introduced. The proposed converter has the ZETA converter advantages such as, buck-boost capability and input to output DC insulation. The suggested converter voltage gain is higher than the classic ZETA converter. In the presented converter, only one main switch is utilized. The proposed converter offers low v...

متن کامل

A New Structure of Buck-Boost Z-Source Converter Based on Z-H Converter

In this paper, a new structure for buck-boost Z-source converter based on Z-H topology is proposed. The proposed converter consists of two LC networks similar to the conventional Z-source and Z-H converters. One of the characteristics of the proposed structure is that, without any changing in its’ power circuit, it can be used in different conversions such as dc/dc, dc/ac and ac/ac. This unique...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014